10 resultados para Aminopeptidases

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel targets for new drug development are urgently required to combat malaria, a disease that puts half of the world's population at risk. One group of enzymes identified within the genome of the most lethal of the causative agents of malaria, Plasmodium falciparum, that may have the potential to become new targets for antimalarial drug development are the aminopeptidases. These enzymes catalyse the cleavage of the N-terminal amino acids from proteins and peptides. P. falciparum appears to encode for at least nine aminopeptidases, two neutral aminopeptidases, one aspartyl aminopeptidase, one aminopeptidase P, one prolyl aminopeptidase and four methionine aminopeptidases. Recent advances in our understanding of these genes and their protein products are outlined in this review, including their potential for antimalarial drug development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An array of schistosome endoproteases involved in the digestion of host hemoglobin to absorbable peptides has been described, but the exoprotease responsible for catabolising these peptides to amino acids has yet to be identified. By searching the public databases we found that Schistosoma mansoni and Schistosoma japonicum express a gene encoding a member of the M17 family of leucine aminopeptidases (LAPs). A functional recombinant S. mansoni LAP produced in insect cells shared biochemical properties, including pH optimum for activity, substrate specificity and reliance on metal cations for activity, with the major aminopeptidase activity in soluble extracts of adult worms. The pH range in which the enzyme functions and the lack of a signal peptide indicate that the enzyme functions intracellularly. Immunolocalisation studies showed that the S. mansoni LAP is synthesised in the gastrodermal cells surrounding the gut lumen. Accordingly, we propose that peptides generated in the lumen of the schistosome gut are absorbed into the gastrodermal cells and are cleaved by LAP to free amino acids before being distributed to the internal tissues of the parasite. Since LAP was also localised to the surface tegument it may play an additional role in surface membrane re-modelling. (C) 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in > 2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the malarial neutral aminopeptidases that are involved in the terminal stages of hemoglobin digestion and essential for the provision of amino acids used for parasite growth and development within the erythrocyte. We characterize the structure and substrate specificity of one such aminopeptidase, PfA-M1, a validated drug target. The X-ray crystal structure of PfA-M1 alone and in complex with the generic inhibitor, bestatin, and a phosphinate dipeptide analogue with potent in vitro and in vivo antimalarial activity, hPheP[CH2] Phe, reveals features within the protease active site that are critical to its function as an aminopeptidase and can be exploited for drug development. These results set the groundwork for the development of antimalarial therapeutics that target the neutral aminopeptidases of the parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminopeptidases are enzymes that selectively hydrolyze an amino acid residue from the N-terminus of proteins and peptides. They are important for the proper functioning of prokaryotic and eukaryotic cells, but very often are central players in the devastating human diseases like cancer, malaria and diabetes. The largest aminopeptidase group include enzymes containing metal ion(s) in their active centers, which often determines the type of inhibitors that are the most suitable for them. Effective ligands mostly bind in a non-covalent mode by forming complexes with the metal ion(s). Here, we present several approaches for the design of inhibitors for metallo-aminopeptidases. The optimized structures should be considered as potential leads in the drug discovery process against endogenous and infectious diseases. Crown Copyright (C) 2010 Published by Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PF4 has previously been shown to have potent inhibitory effects on myoactivity of somatic muscle strips from the nematode, Ascaris suum. This study examined the bioactivity and metabolic stability of position 2- and position 5-modified analogues of PF4. Although the analogues [Leu(5)] PF4, [Ala(2)]PF4, [Gly(2)]PF4, [Ala(2),Leu(5)]PF4, and [Gly(2),Leu(5)]PF4 all had qualitatively similar inhibitory effects on A. suum somatic muscle strips, their effects were quantitatively distinguishable and had the order of potency: PF4 = [Leu(5)] PF4 >> [Ala(2)]PF4 = [Ala(2),Leu(5)] PF4 >> [Gly(2)] PF4 = [Gly(2),Leu(5)] PF4. Leu(5) for Ile(5) substitutions in PF4 did not alter the activity of this peptide; however, Gly(2)/Ala(2) for Pro(2) substitutions reduced, but did not abolish, peptide activity. Peptide stability studies revealed that [Gly(2)]PF4(2-7) and -(3-7) and [Ala(2)]PF4(2-7), -(3-7), and -(4-7) fragments were generated following exposure to A. suum somatic muscle strips. However, the parent peptide (PF4) was not metabolized and appeared to be resistant to the sequential cleavages of native aminopeptidases. Observed analogue metabolism appeared to be due to the activity of released aminopeptidases as identical fragments were generated by incubation in medium that had been exposed to somatic muscle strips and from which the strips had been removed prior to peptide addition. It was found that the muscle stretching and bath mixing characteristics of the tension assay led to more effective release of soluble enzymes from muscle strips and thus greater peptide degradation. These studies reveal that Pro(2) in PF4 is not essential for the biological activity of this peptide; however, it does render the peptide resistant to the actions of native nematode aminopeptidases. Copyright (C) 1996 Elsevier Science Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial aminopeptidases play important roles in pathogenesis by providing a source of amino acids from exogenous proteins, destroying host immunological effector peptides and executing posttranslational modification of bacterial and host proteins. We show that MHJ_0125 from the swine respiratory pathogen Mycoplasma hyopneumoniae represents a new member of the M42 class of bacterial aminopeptidases. Despite lacking a recognizable signal sequence, MHJ_0125 is detectable on the cell surface by fluorescence microscopy and LC-MS/MS of (i) biotinylated surface proteins captured by avidin chromatography and (ii) peptides released by mild trypsin shaving. Furthermore, surface-associated glutamyl aminopeptidase activity was detected by incubation of live M. hyopneumoniae cells with the diagnostic substrate H-Glu-AMC. MHJ_0125 moonlights as a multifunctional adhesin, binding to both heparin and plasminogen. Native proteomics and comparative modelling studies suggest MHJ_0125 forms a dodecameric, homopolymeric structure and provide insight into the positions of key residues that are predicted to interact with heparin and plasminogen. MHJ_0125 is the first aminopeptidase shown to both bind plasminogen and facilitate its activation by tissue plasminogen activator. Plasmin cleaves host extracellular matrix proteins and activates matrix metalloproteases, generating peptide substrates for MHJ_0125 and a source of amino acids for growth of M. hyopneumoniae. This unique interaction represents a new paradigm in microbial pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peptidic nature of anti-IAPs N-terminus Smac-derived peptides precludes their utilization as potential therapeutic anticancer agents. Recent advances in the development of novel Smac-derived peptidomimetics and non-peptidic molecules with improved anti-IAPs activity and resistance to proteolytic cleavage have been reported and led to a number of candidates that are currently in clinical trials including LCL-161, SM-406/AT-406, GDC-0512/GDC-0917, and birinapant. As an attempt to improve the proteolytic stability of Smac peptides, we developed the Aza-peptide AzaAla-Val-Pro-Phe-Tyr-NH2 (2). Unlike unmodified peptide Ala-Val-Pro-Phe-Tyr-NH2 (1), analogue (2) exhibited resistance towards proteolytic cleavage by two aminopeptidases; LAP and DPP-IV, while retaining its IAP inhibitory activity. This was due to the altered planar geometry of the P1 residue side chain. Our findings showed that using aza-isosteres of bioactive peptide sequences imbue the residue with imperviousness to proteolysis; underscoring a potential approach for developing a new generation of Smac-derived Aza-peptidomimetics.